Step of Proof: p-fun-exp-add-sq
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
p-fun-exp-add-sq
:
1.
A
: Type
2.
f
:
A
(
A
+ Top)
3.
x
:
A
4.
n
:
5.
can-apply(
f
^0;
x
)
(
f
^
n
+0(
x
)) ~ (
f
^
n
(do-apply(
f
^0;
x
)))
latex
by (((RepUR ``p-fun-exp do-apply`` ( 0)
)
CollapseTHEN (Fold `p-fun-exp` 0)
)
CollapseTHEN (
C
RepUR ``p-id`` ( 0)
)
)
CollapseTHEN (((UnivCD)
CollapseTHENA (Auto
)
)
CollapseTHEN ((
C
ProveSqEq)
CollapseTHEN (Auto
)
)
)
latex
C
.
Definitions
f
^
n
,
do-apply(
f
;
x
)
,
p-id()
,
,
{
x
:
A
|
B
(
x
)}
,
,
A
B
,
A
,
False
,
P
Q
,
s
~
t
,
n
+
m
origin